Interpreting atomic force microscopy measurements of hydrodynamic and surface forces with nonlinear parametric estimation.

نویسندگان

  • Song Cui
  • Rogerio Manica
  • Rico F Tabor
  • Derek Y C Chan
چکیده

A nonlinear parameter estimation method has been developed to extract the separation-dependent surface force and cantilever spring constant from atomic force microscope data taken at different speeds for the interaction between a silica colloidal probe and plate in aqueous solution. The distinguishing feature of this approach is that it exploits information from the velocity dependence of the force-displacement data due to hydrodynamic interaction to provide an unbiased estimate of the functional form of the separation-dependent surface force. An assumed function for the surface force with unknown parameters is not required. In addition, the analysis also yields a consistent estimate of the in situ cantilever spring constant. In combination with data from static force measurements, this approach can further be used to quantify the extent of hydrodynamic slip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic modeling and nonlinear vibration simulation of piezoelectric micro-beam in self sensing mode of atomic force microscope

Nowadays, atomic force microscope is considered as a useful tool in the determination of intermolecular forces and surface topography with the resolution of nanometers. In this kind of microscope, micro cantilever is considered as the heart of the microscope and is used as a measuring tool.  This paper is aimed towards investigating the behavior of a piezoelectric micro cantilever with a triang...

متن کامل

Direct force measurements between carboxylate - modified latex microspheres and glass using atomic force microscopy

9 Depths of colloid-surface interaction energy minima have been sometimes utilized for estimation of the force holding a colloid to the surface upon contact. Since this approach assumes that non-contact forces prevail following attachment, a comparison of this approach to direct measurement via atomic force microscopy is warranted. Interaction and adhesion forces between 1.0m diameter carboxyla...

متن کامل

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment

The nonlinear dynamic response of atomic force microscopy cantilevers tapping on a sample is discussed through theoretical, computational, and experimental analysis. Experimental measurements are presented for the frequency response of a specific microcantilever-sample system to demonstrate the nonlinear features, including multiple jump phenomena leading to reproducible hysteresis. We show tha...

متن کامل

Estimation of Hydrodynamic Forces on the Cylinderical Smooth Piles to Random Waves and Currents

Most Codes such as API and BSI recommend Morison’s equation to estimate hydrodynamic forces on offshore structures. Significant differences exist among these Codes due to using different methods of analysis and estimation of force coefficients. In this paper, data from full scale tests have been used to evaluate random waves and uniform current actions on the smooth piles.&#10 Four time an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 83 10  شماره 

صفحات  -

تاریخ انتشار 2012